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A general probabilistic theory of sign coincidences is described which is valid in all the centrosymmetric 
space groups. The theory makes full use of space-group symmetry by means of suitable joint probability 
distribution functions. The phase relationships obtained are in some way space-group dependent: their 
estimation requires an appropriate use of space-group algebra. 

1. Introduction 

The method of coincidences was described by Grant, 
Howells & Rogers (1957) for the application of the 
Sayre relation S(HOS(Ha)~_S(H1 + H2) to projections 
with symmetry pgg, pmg, and p4g. In their terminology, 
if A and B are reciprocal vectors, the product S(A)x 
S(B) can enter into a relation with several different third 
terms S(Ca), S(Ca), etc., whose signs are said to coin- 
cide: 

[S(C,)-~ S(C2)...]A,,. 

A particular coincidence case is obtained for centro- 
symmetric space groups when ]En,], ]En2[, ]En,+n2], 
]En,-n~] are sufficiently large: in fact 

from which 

S(H 1)S(H 2) -~ S(H a + H 2), 

S(Ha )S(H 2) ~- S(Ha - H 2), 

S(H1 +H2)~S(H1  - H 2 ) .  

(la) 

(lb) 

(2) 

Debaerdemaeker & Woolfson (1972) have extended 
the idea of coincidence to non-centrosymmetric space 
groups in which there are translational elements of 
symmetry. According to them, from a ~ listing one 

2 
can deduce the existence of pairs of phase relations of 
the general form 

q~v + Bm(tP, + q~s)+ bm~-O, (3a) 

~oq + Bq,s(q~r + q~s) + bqrs-~ 0, (3b) 

where the b's are constant angles arising because of the 
translational symmetry, and the B's can be ___ 1. By a 
combination of (3a) and (3b) one obtains a general 
relation between ~o v and q)q" 

(Pp +_ (pq ++_ (bprs +_- bqJ,-,O. (4) 

Debaerdemaeker & Woolfson (1972) supplied in 
their paper a probabilistic theory of the coincidence 
phase relations. In accordance with them, we refer to 
P212a21" let us consider the relations 

q~p~r/ 
~q = bq) q - mn ~_ q, 

where b =  _+ 1 and m=0.1. P1 and P2 are the prob- 
ability distributions for (pp and (q, derivable from the 
Cochran (1955) theory" 

ta,2(q~)=[2nlo(G)] -a exp [G cos ( e -  t/)], 

where (Karle & Karle, 1966) G=2aaa23/ElExE2L3[. 
According to Debaerdemaeker & Woolfson (1972), 

the strength of a coincidence phase relation depends 
on the probability distribution P of the quantity 
0 = % -  (q: 

= ~ ' ~  P1 (x )P2(x  -q- 0 )dx  • (5) P 
d -  

In centrosymmetric space groups (5) is equivalent to 
the statement" if Pa and Pz are respectively the prob- 
abilities of the relations (la) and (lb), the probability of 
(2) is given by (Woolfson, 1961) 

P = P1P2 + (1 - Pa) (1 - P2). (6) 

Giacovazzo (1974a) showed that (6) is in contrast with 
the Harker-Kasper  inequalities, and that results are 
misleading when [gn,I or IEH~I is small. We will show 
in part II of the present paper that (5) may also lead to 
wrong phase relations when ]EH,[ and (or) IEn2[ are 
small. The phase information deduced from weak re- 
flexions Ha and (or) H2 is particularly important in 
symmorphic space groups because it can lead to 
relations such as 

(pp -- ~q "~" Tg. (7) 

Debaerdemaeker & Woolfson's (1972) approach im- 



532 A PROBABILISTIC T H E O R Y  OF 

plies, on the other hand, that the probability distribu- 
tions of rpp in (3a) and q0q in (3b) are independent in a 
statistical sense: it is not then possible in principle to 
obtain (7). 

Formulae for linear combinations of two phases 
which are structure seminvariant have been derived in 
some space groups by Hauptman (1972) by means of 
an algebraic approach. As the method requires knowl- 
edge of the algebraic form of the structure factor, the 
derivation of the phase values in any space group 
requires an ad hoc mathematical treatment. 

Although coincidence and seminvariant cosine 
methods work on the same sets of phases, the conclu- 
sive relations are not quite consistent. As far as we 
know, no attempt has been made at explaining the 
statistical meaning of the incongruence of the two 
methods. The chief aim of the present paper is to derive 
a probabilistic theory which generalizes Debaerde- 
maeker & Woolfson's (1972) results so as to give 
improved estimates of the seminvariant cosines. 

The probabilistic background employed in the 
present paper assumes that the reciprocal vectors are 
fixed and that the atomic coordinates are the primitive 
random variables. Under this assumption two dif- 
ferent mathematical methods will be used. The first 
involves a Gram-Charl ier  expansion of the character- 
istic function in terms of standardized cumulants. The 
second uses the same cumulants, but directly in the 
exponential expression of the characteristic function. 
The resulting formulae obtained by means of the two 
methods are not quite identical and require different 
computation times. Both methods require the ability 
to compute non-vanishing standardized cumulants for 
every space group. Space-group algebra can provide 
estimates of these cumulants: in both sections of the 
paper, therefore, a number of appendices are devoted 
to carrying out this algebraic analysis. We note ex- 
plicitly that the mathematical approach stated in this 
paper enables us to find the expected value of a semin- 
variant phase from pairs of quartets as well as from 
pairs of triplets. This theme will be the subject of a 
future paper. 

2. Preliminary remarks 

Let the symmetry number of the actual space group 
be denoted by m, and by Cs = (Rs, Ts), s = 1, ..., m, the m 
symmetry operators. Rs represents the rotation matrix 
involved, T~ the column matrix of translation. As is 
well known, 

(PHI +H2 ---~ qTH, -'F (PH2, (8a) 

~o.,.~ +.~.~ ~_ ~.,.~ + ~o.~.~, (8b) 

if all the moduli of the normalized structure factors 
involved in (8) are large enough. As 

cPnRs = cpu - 2rcHTs, 

(8a) and (8b) become 

THE C O I N C I D E N C E  METHOD.  I 

(PHIRp + H2Rq "~ (~)H, "F (PH2 --  2rc(I-I 1Tp + H2Tq), 

from which 

~ox, +n2 - (pu,.p + n,Rq - 2r~(H1Tp + H2Tq) ~- 0. (9) 

From now on we will regard OH, +u2 and (Pn,.p÷n~xq as 
constituting a specially related pair of phases (s.r.p.p.): 
their difference is a seminvariant phase. The value of 
2r~(H~Tp+H2Tq), in fact, depends on the fixed func- 
tional form of the structure factor and is independent 
of the choice of the cell origin. From (9) one derives 
that an s.r.p.p, will give rise to a phase coincidence 
((PH, +H2--'~(RH,Rp+H2Rq) when all the magnitudes of the 
normalized structure factors involved in (9) are large 
enough, and 27z(H1Tp+H2Tq)=0. From the point of 
view of direct methods, nevertheless, (9) is equally 
useful both when a coincidence occurs, and when 
2rc(H1Tp + H2Tq) is not zero. In fact, the knowledge of 
one phase of the two which constitute an s.r.p.p, al- 
ways enables us to assign, from (9), a value to the other 
phase. In conclusion, even if we continue denoting the 
method as the 'coincidence method', its major goals 
are: (1) the search of all the s.r.p.p.'s whose phases are, 
statistically speaking, strongly related; (2) the estimate 
of the probability and variance values joined with any 
s.r.p.p. 

Some other remarks about the method should be 
made. In accordance with (5) and (9), Debaerdemaeker 
& Woolfson's (1972) procedure derives the s.r.p.p.'s 
from a ~ listing made from the largest [El magnitudes 

2 
alone. This procedure is unsuitable when one wants to 
derive phase information from weak reflexions H1 and 
(or) H2. In fact in this case the derivation of the s.r.p.p.'s 
from a complete }-" listing would require too much 

2 
computer storage. A different procedure may be 
suggested if one notes that the s.r.p.p.'s in (8) and (9) 
are defined via the rotation matrices. One should then 
try to exploit the algebraic properties of the rotation 
matrices in order to derive the parities of the s.r.p.p.'s 
in each space group and the nature of the vectors which 
contribute to the value of each s.r.p.p. Based on these 
principles an automatic procedure has been success- 
fully carried out by Spagna & Giacovazzo (1976) which 
works in all the space groups. 

3. The mathematical approach 

Suppose that a crystal structure consists of N identical 
atoms in the unit cell and that m is the order of the 
space group: t = N / m  is the number of atoms in the 
asymmetric unit. 

The characteristic function C(ul,  u2, ..., u,) of the 
multivariate distribution P(E1, E2, ..., E,) is given by 

"' 2v  t v / 2  ' 
(10) 
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where 

S~=t ~ !s v2rs'''w t (iul)r(iu2)S'" • (iu.)W" 
r + s +  . . .  + w = v  r . . . .  w .  

2,~...w are the standardized cumulants of the dist r ibu-  
t ion. In accordance with our preceding papers (Gia- 
covazzo, 1974a, 1975, 1976) the Fourier transform of 
(10) is calculated via its Gram-Char l ier  expansion 
(Klug, 1958). 

exp [-½(u~ + . . .  +u~)] 1+  + -F~- + ~--~ + . . . .  (11) 

The reader will find a detailed account of the method 
in the quoted papers. 

A second method will be used here which calculates 
the sign relations directly from the Fourier transform 
of(lO). Details of the method are described in Appendix 
C. 

4 The distribution P ( E n . , E H . , E  a .  +r l - ,E l t l i l  +H2R ) 
• 1 g 1 ~ p q 

when the Gram-Charl ier  expansion of the characteristk 
function is used 

We introduce the abbreviations 

El=End, EE=En2, E a = E m + n : ,  E+=Entap+n2aq. 

In order to retain terms up to order N-~,  we derive 
(see Appendices A and B) 

1 
S a l t  3/2 = ~ [(iul)(iu2)(iu3) 

+ ( -  1)2(HtTp + ItzTq)(iu 1 ) (iu2) ( iu4) ] ,  

S+/t 2 = [(iul) 4 + . . .  +(iu4) 4] + -~(iua)2(iu+) 2 

+ ( - -  I)2(I'I'Tr'+H"Tq ') 
2N ?[(iux)2(iu3)(iu4)+(iu2)2(iu3)(iu4)]" 

fl is a factor depending on the symmetry class: its 
lowest value is - 1/8, assumed, for example, in Pi ,  but 
it may be positive in space groups of higher symmetry. 

The ct and fl factors depend on the symmetry class 
as well as on the actual rotation matrices Rp and Rq. 
For example, 7 = 1 and ot = 0 when Rp = I and Rq = - I 
or vice versa; y > 2 and g > 0 in other cases. 

After some calculation we derive 

1 
P+ -~½+½ tanh ~-~ [E3E,[ 

1 × 
1 + 2H2(Et)H2(E2)/N + 4ct/N 

1 
× 

1 1) + H,(E:)]/N 

× [2E E  + 1)] ( -  
. J  

(12) 

where Hv is the Hermite polynomial of vth order 
defined by the equation 

d v 
H~(x) = ( -  1) ~ exp (½x 2) d-~ exp (-½x2). 

P+ represents the probability that S(H1 + H2)S(H1Rp + 
nERq) is positive when IE.,I, lEa21, IEu, +.21, IEa,.p + .~a+l 
are known. 

We first make some remarks about the mathematical 
form of(12). I f N  is large enough, the fl and e factors do 
not play a critical role: their calculation, nevertheless, 
may be very time consuming. A useful approximation 
to (12) is therefore the simpler relation {l 
P+ =½+½ tanh ~ [E3Ea[ 1 + 2H2(E1)H2(E2)/N 

x [2E2E 2 + ( 7 - 2 )  (E21 + E2) -  2(y - 1)] ( -  1) 2tH'Tp +a2tq)t, 
. J  

(13) 

in which we have fixed f l_  ~ ~_ 0. For the sake of sim- 
plicity the same approximation will be used in fol- 
lowing relations. 

It is useful to compare (13) with the corresponding 
sign relation derived from the use of (6). As 

~ ~ ~IE21 ' ' 

Fig. 1. Two contours of(13) are shown when y=2,  H1Tp+H2Tq=0 
(mod. l) and N--40. The broken line represents a contour of (14), 
the shaded area is the region in which (13) is less than ½. 

IE,I 

. ~¢~.--P. = O.94 

Fig. 2. The broken line represents a contour of (14), the full lines are 
two contours of (13) when 7=4,  H t T p + H 2 T o - 0  (rood. l) and 
N=40 .  The shaded area is the region in which (13) is less than ½. 
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P +(En,En~Emap +n:R,) 

~--½-t-½tanh[~NlEmEn2Emnp+n2xql(-1 )2(nlTp + U2Tq)], 

by expanding tanh as far as the first power, we obtain 
from (6) 

P+ ½ + ½ t a n h I ~  2 2 ]" = E1E2(- 1) 2~n~Tp +u2TO (14) 

When R p = I  and Rq= - I ,  (14) is in contrast with the 
Harker-Kasper  inequalities and gives entirely mislead- 
ing results when IEH,I or [Eml is small (Giacovazzo, 
1974a). Presumably the same inconvenience should af- 
fect any coincidence theory based on (6). The cases y = 
2,4 in (13) are illustrated in Figs. 1 and 2, respectively, 
when (HxTp+HETq)-0 (mod. 1), and are compared 
with (14). The same figures hold also when (H1Tp+ 
HETq)~0 (mod. 1)if we change P+ into P_ values. We 
observe that: (a) P + values smaller than 1/2 are not pos- 
sible in (14) when (H~Tp+H2Tq)-0  (mod. 1). On the 
other hand, (13) involves some regions of the (IE1 [, lEE l) 
plane in which P+ < 1/2, in accordance with Harker-  
Kasper inequalities. These regions are shaded in Figs. 
1 and 2. (b) When y =2, (13) agrees well with (14) solely 
at high values of IEal and IE2I [broken lines in Figs. 1 
and 2 correspond to curves of (14)]. The behaviour of 
(13) when 7 = 4  is, on the other hand, remarkably dif- 
ferent from that corresponding to ~ = 2 (compare Figs. 
1 and 2). 

These considerations indicate that, unlike ~ and fl, it 
could be worth while calculating the ~ factor for each 
pair (Rp, Rq) used in the coincidence procedure. 

5. The distribution 
P(EnI,EH2,Eni +tl2,EHIR +H2Rq, EHI +K, EH2 -K,...) 

when K(R~,- Rq) = 0 and pwhen the Gram-Charlier 
expansion of the characteristic function is used 

Let us denote 

Hx +H2 = U ,  H1Rp+H2Rq=V. (15) 

In §2 we showed that 

q~u - q~v ~- 2~(H 1Tp + HETq) 

if [Eml, IEu~[, IEuI, lEvi are large enough. 
The algebraic properties of the symmetry operators 

C=(R,T)  can in general allow more pairs (H~,H2) to 
give information about the expected value of q~u - ~Ov. 
A general way of obtaining these pairs is to calculate 
the values 

H'I = H i + K ,  H2 = H z - K  

when K(Rp-Rq)=0. In fact the pair (H'~,H2) satisfies 
(15) and leads to 

~pu - ~pv = 2~z(H'~Tp + nETq) 

if IEml, lEnd, levi, lEvi are large enough. 
This result suggests that more exhaustive informa- 

tion on an s.r.p.p, may be given by means of the dis- 

tribution 

P(En,, ..., EnlRp +mac ..-, Em +u j, End-K j, ...) 
when Kj(R v -  Rq) = 0 for each j. 

After lengthy calculations we obtain 

,.~1+ ~ tanh 2_ ~ 1 P+-~-  ~ ~ IEn, +n2gn,l~,+mx~l 

[2En, + KjE m- Kj 
J 

+(E 2, +Kj + E2~-K)(7-- 2)-- 2(7-- 1)] 
x ( -  1) zt(H' + K,)T~ +(m-K;)r.]}, 

where 

(16) 

Q=  1 -t- 2[~. (E 2, +Kj-- 1)(E2~_Kj)]/N. 
J 

In order to obtain some insight into the nature of 
(16) let us examine its practical application in a given 
space group, for example P21/c. By leaving out the 
trivial case Rp = I, Rq = +_ I, we shall devote our atten- 
tion to the case in which 

i °il I°1 Rp = I ;  Rq = , Tq = 1 . 
0 ½ 

As 7=2,  (16) becomes 

1 1 IEHI+ll2EH1Rp+HERq I P + = ½ + ½ tanh ~-~ 

x{2 E • (Ea, +KjEm-Kj-- 1) 
d 

x ( -  1)2[tn' + K~)a'p + tin- Kj)rqI}. (17) 

Let us suppose, now, 

H1 +HE=(2,3,4) ,  H1Rp+HERq=(6,3,2). 

As the vector K defined by the condition K(Rp-  Rq)= 0 
is an (0, k,0) type vector, one obtains 

Hi =(4,k,3), U E = ( - 2 , 3 - k , 1 ) ,  (18) 

where k can assume any value. In Fig. 3 is shown a re- 
gion of the reciprocal plane which contains the re- 
flexions (18)" as the sign probability of EE, a,4E6,3, 2 
depends on the distribution of the IEI values in the rows 
defined by (18), we have marked this set in the figure 
by full circles" the radius of any circle is proportional 
to IEI of the corresponding reflexion. We observe that 
the vectors Ha + K), n 2 --Kj are symmetrically related 
by a centre located at (H1 + H2)/2. For large values of 
probability (P+ or P_) the magnitudes IEn, +KjErl~-KJ 
must be alternately large or small according to th~ 
parity of H 2 -Kj.  In Fig. 3 is shown a situation favour- 
able to large values of P+. 

Furthermore, it could be useful to note that if the 
actual space group was P2/m, a situation favourable 
to large values of P+ would require large magnitudes 
IEul + K,Em- Kjl irrespective of the parity of H2 - K~. On 
the other hand, small IEH,+KjEn2-Kjl magnitudes, 
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Fig. 3. Region of the reciprocal space defined by the reflexions 
(4, k, 3) and (-2, 3-k, 1). 

irrespective of the parity of H 2 -  K j, indicate in P2/m 
the sign relation 

S(H1 + H2)S(H~Rp + H2Rq) = - 1. 

This explains the effects of the translation components 
of the symmetry operations in the coincidence method. 

6. The coincidence probability when the exponential 
form of the characteristic function is used 

Appendix C shows that 

P(EHI, Erl2, EH, +r12, EH1Rp +H2Rq) 

1 ,.~ 2 _ (27r)z exp { -} (E  2, + . . .  + EH,,,~ +H21~,) 

1 1 
"k ~ EH,EH2EHI +H2 -b ~ EH,EH2EH,R,. +H2R. 
× ( - -  I)2(H'Tp +H2Tq) 

× EH, +H2EH,Rp +H2Rq(- I)2(H'Tp+H2Tq)}. (19) 

Denoting by Rn the absolute value of EH, from (19) we 
obtain 

1 ( ~ N )  P+ ~ ~exp  (_B)  cosh RH,RH~Z ± , (20) 

where 

1 + R22) 1 

x RH, +H2RH,Rp + H2Rq(-- 1) 2(X'Tp + X2Tq), 

Z +  ---- [RH, +H2 ------{-(-- 1) 2(H'T~ + H2Tq)RH,Rp +H2Rq], 

L = exp (+ B) cosh RB,RH2Z 

+exp ( - B )  cosh RH1Rx~Z- . 

We note explicitly that the value of 7 seems able 
strongly to affect the probability values provided by 
(20). 

When the more general probability density 

P(EH,, EH2, EH i +H2, EHIRv +H2R¢-" ", Eat +Ks, EH2-Ks, "" ") 

is explored provided Kj(R v -  Rq)= 0 for each value of j, 
the more exhaustive sign relation is found: 

1 
P± -~ ~exp(__+B)cosh RH,+K,Rn~-K,Z~ ... 

Xcosh(~NRH,+KjRH~_KjZf) . . . ,  (21) 

where 

+ ( -- 1 )2[(H1 + Kj)Tp -t- (H2 - Kj)Tql] 

-+- (~2 - -~ )  [( -- 1)2[(Ha + K ')TP + (H2 - K')Tq] 

x (R2,+K, +R22_K,)+.. .  

+(_ I)2[(H, + K I L T .  + (H2- Kj)Tq](R2 ' +Kj_[_RHz_Kj)_[_2 "" "]I 
.] 

× RH, +H2RH,Rp +H2Rq, 

Z} = [RH, +H2 -{-(-- 1) 2[(Xl +Kj,Tp +(H2- KflTq] 

x Rx,np + H2R~] • 

Details about the practical use of (21) and connexions 
with (16) would make this paper dull reading and will 
be described in a future paper. 
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7. Conclusions 

A theory has been described which, from the knowledge 
of [El's, derives a probabilistic value for the sign of the 
product Ea, +. n~En,a~ +n~n,: In particular, the theory is 
able to give in symmorphlc space groups relatmns of 
the type 

S(H~ + H2)S(H~Rp + H2Rq)- - 1, 

which are of great interest in direct procedures for 
phase determination [see Schenk & de Jong (1973) for 
the case R v = I, R~ = - I  or vice versa]. 

The formulae which yield the sign of 
EHt+H2EH~R +n2Rq are expressed, as well as those /~ 
corresponding to triplets Eh, Ek, Eh + k, in terms of the 
hyperbolic tangent if the Gram-Charlier expansion of 
the characteristic function is used. The sign relations 
obtained via the Fourier transform of the original 
expression of the characteristic function are more 
complex than the preceding, but seem able to give 
more accurate values of the coincidence probability. 

(~(H 1)~(H2)~(H 1Rp + H2Rq)) 
=4(0)(-- 1)2(a'Tv+H2Tq) = m(-- 1) 2(It'%'+ 1t2Tq). 

In order to derive the relation 

/]'2011 -- m2°11m 2 ~P'qm ( -  1)2(H1Tp+HzTq)' (A. 2) 

(yp, q = 1 if Rp = I and Rq = - -  I or vice versa; yp, q _> 2 in 
the other cases), we observe that 

rn2011= (~(H1)¢(-Ul)¢(Ul +H2)~(H1Rp + H2Rq)) 

= ( I  ~,n,v ~ ~[HI(Rp+R~+R.+R~)+H2(Rq+R~)] 

xexp {2~zi[Hl(Ts + T , -  T~) + H2Ts] }).  (A.3) 

m2ol  ~ is n o t  z e r o  w h e n  

(a) R~ ----= - -  R q ,  R, = R~, Ro = Rp ; 

(b) R~= - R q ,  R.=  - - R p ,  Ro= - - R q .  

This work was supported by the Consiglio Nazionale 
delle Ricerche (grant No. 75.1066.05.115.4593). 

APPENDIX A 

In the study of the multivariate distribution P(En~, End, 
En~+n~, En~R.+n~R.) some standardized cumulants of 
low order have been used. With a view to deriving 
them, the linearization theory of Bertaut (1959) will 
be utilized. We consider here the vectors H1, H E ,  

H1 + HE, HaRp + n2Rq whose statistical weights equal 
unity. In order to deal with special vector covariances, 
algebraic considerations as in Giacovazzo (1974b, c) 
are necessary 

As is well known 

The two cases coincide when Rp=l  and R q = - I  or 
vice versa: the statement ~= 1 is thus justified in this 
case .  

Nevertheless y may be larger than 2. In symmetry 
classes mmm, for example, in which the rotation com- 
ponents of the symmetry operations are 

0 00 l i 0 i l l  , ] i 0 i l  l i 0 i l  1°1, R2 ,R4= RI=  = = 
0 0 0 0 

Ii°il li°il Ii°il Ii°il R5 = , R 6 =  , R7 = , R8= , 
0 0 0 0 

mlxto (¢(H~)~(H2)~(H~ +H2))  1 
' ~ l l l 0 -  m3/2 -- m3/2 -- V m ,  

where ~ is the trigonometric factor for the centro- 
symmetric space group involved, m is the order of the 
group. In an analogous way 

~1101 
(~(H 1)~(H2)¢(H 1Rp + H2Rq)) 

m3/2 

In fact, as 

(¢(H 1)~(H2)¢(H 1Rp + HzRq)) 

( __ 1)2(H1Tp + H2Tq) 

/m 

= (  is, ~ .  ~[Ht(RP- RA + Hz(Rq- R")] 

x exp [2~i(H1Ts + HzTn)]), (A. 1) 

(A. 1) is not zero for Rs = Rp and R, = Rq. Finally 

y = 4 i f p = l ,  q=2 ,3 ,4 ;y=  1 i f p = l , q = 5 ; y = 2 i f p = l ,  
q = 6, 7,8. In fact, when p = 1 and q = 2, for example, 
(A. 3) does not vanish when 

R s = - R 2 ,  R .=R2 ,  Rv=RI,  
R s = - R 2 ,  R . = R s ,  Rv=R6, 
R~= - R 2 ,  R .=R8 ,  R .=R3 ,  
R s = - R 2 ,  R .=R7 ,  R~=R4. 

Some multivariate distributions studied in this 
paper involve a vector K which satisfies the condition 
K(Rp-Rq)--0. On the basis of the linearization theory 
it is a straightforward task to verify the relation 

(~(H1 + K)~(H2 - K)~(H~Rp + H2Rq)) 

= ~[HI(Rp + Rs) + H2(Rq + R,) + K(Rs- R,)] 
\ap.q \ 

x exp {2rci[(Hi + K)Ts + (Hg-K)T, ]})  
/ 

= m( --  1) 2[(n~ + K)Tp + (H2 - K)Tq] 
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In a similar way we derive the relation 

(¢(H1 + K)~(H2 - K)¢(H0¢(H2)) 

= / 1  p,q,v ~ ~[Hx(I+R,)+H2(Rq+Rv)+K(I-R~)] 

xexp{2rci[H~T,,+H2(Tq+To)-KTq]}). (A.4) 

If R, = - I and Ro = - Rq, the value of (A. 4) equals 

~[K(I-Rq) exp (-2rciKTq)] =~2(K)=p~m. (A.5) 

If K is a zero reflexion (p~ = 0), (A. 5) vanishes. 

APPENDIX B 

In this Appendix the values of some standardized 
cumulants are calculated whose estimate is not critical 
in order to define the coincidence conditions for an 
s.r.p.p. Their estimates however may be of some interest 
from an algebraic point of view. From the $4 definition 
in §4, 

),0022 0~:-m - -  
212! ' 

where 

),0022 "-- m ° ° 2 2 - - m ° ° 2 ° m ° ° ° 2  m2 (B. 1) 

If we limit ourselves to the simple case in which Rp = I, 
Rq = Rs. Then 

m0022 = (~2(H1  + H2)~2(H1 + H 2 R s ) )  

=(lp,, , ,q ~ ~[HI(I+Rp+R,,+Rq) 

+ H2(R s + Rp + RsR, + Rq)] \ 

x exp {2~ri[Hl(Tp + T, + T~) + H2(Tp + RsT, + Tq)]). 

(B.2) 
(B. 2) does not vanish when 

Rq = - Rp, R. = - I. (B. 3) 

The combinations in (B. 3) give a contribution equal 
to  m 2, which, substituted in (B. 1), make (B. 1) zero. 
If Rs is a proper or improper rotation matrix of a 
symmetry element of order two, additional combina- 
tions exist besides those described by (B. 3). In fact 
(B. 2) does not vanish also when 

- R p - R q = I + R n = R s ( I + R , ) ,  R , ¢ - I .  (B.4) 

(B. 4) is verified when 

Rn = R~, R.R, = I, 

which involves in its turn the condition 

R2=I .  (B.5) 

(B. 5) is just the condition which denotes the symmetry 
elements of order two. 

So, in symmetry class 2/m we have, when s = 3,4, 

moo22 = 24, ) ,0022  = 1/2 ; 

in  mmm 

) `0022  -~-- 5 / 4  when s=2,3,4 

2 0 0 2 2 = 0  when s=5  

) , 0 0 2 2 = 1 / 2  when s=6,7,8. 

It is worth while spending some time on the factor fl 
which appears in the $4 definition. We find 

1 ),400... 
fl t 4!0!0! . . . '  

where 
),400 = m4oo...-3m2oo... 

•.. m2200 

The moment m4oo .... in its turn, is defined in any 
space group by 

( ~ 4 ( n ) ) = ( l p ,  q,~ ~ ~[n( I+Rp+aq+av) ]  

xexp {2ni[n(Tp+Tq+T~)]}). (B.6) 

Expression (B. 6) is non-zero for all combinations of 
the rotation matrices for which 

I + Rp + Rq + R~ = 0. (B. 7) 

Condition (B. 7) is valid, for example, when 

(a) R p = - I ,  R q = - R v  

(b) R q = - I ,  R p = - R ~  

(c) R ~ = - I ,  R p = - R q .  

Excluding equivalent combinations, we obtain a total 
of 3(m-1) solutions to (B. 7_). In accordance with this 
result, in symmetry classes 1 and 2/m, (B. 6) equals 6 
and 36 respectively. Further combinations, never- 
theless, add to the combinations in (a), (b), (c) for space 
groups with higher symmetry. For example, in class 
m m m  

(~4) _- 27m> 3(m- 1)m: 

the additional combinations are 

Rp=R6, Rq=R7, R~=R8; Rp=R6, Rq=Rs, R~=R7 

Rp=RT, Rq=R6, R~=R8; Rp=R7, Rq=R8, Rv=R6 

Rp=R8, R~=R6, Rv=RT; Rp=R8, Rq=RT, R~=R6. 

For a space group of order m, therefore, fl >_ - 1/8N. We 
indicate explicitly that one may have fl > 0: in symmetry 
class mmm, in fact,//= + 1/8N. 

APPENDIX C 
Denoting 

E1 =Enl,  E2--Erl2, Ea=Enl+n2, 
E4=Enln,+n2nq, f =  2(H1Tp + H2Tq), 
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their probability density function may be written 

l f + ~ f  [ P(E1,...,E4) ~- ~ ... exp -,}(u~ +.. .  +ul)  

- i(Elul +... + E , , u 4 )  

i i 

, ] + ~ ( -  1)f(u~u3u4+u~u3u4) duldu2du3du4. (C. 1) 

The integration of (C. 1) with respect to u3 and u4 is 
readily carried out: 

1 
P --" (2n)-----~ exp [ - ~ E  2 + E~)] 

f+°° f ~ : e x p  [ x -~u~  +u~)-i(Elu, + E2b/2) 
- - 0 0  

1 1 
I '  

( -  1)S(u 2 +u2)E3E41. (C.2) 
2N 

,,,,,I 

The integrations of (C. 2) with respect to u~ and u2 are 
carried out by means of the expansion 

Y e x p [ - - ~ ( - 1 ) f E 3 E 4 u 2 1  

~_ 1 -  ~-~(-  1)f EzE4u 2 + . . . ,  (C.3) 

and by means of the integral relation 

f + °°x2 exp ( -  #x 2 + 2vx)dx 
- - O O  

= + ~/~ (1 + 2-~)  exp (v2/#) • 

Finally, we obtain 

P = (2=) 2 1 + ( -  1) e E3E 4 

~) E2E3E4_(_l)f(~-~)E2E3E4; + ( -  1) e 

x exp 
l V 

1 1 1 + ~-~(--  1)Y(E1E2E4 - - ~ ( -  1)YE2~E3E4 , 

which, by means of (C. 3), reduces to (19). 
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